zxpr.net
当前位置:首页 >> log公式运算法则 >>

log公式运算法则

一、四则运算法则: loga(AB)=loga A+loga B loga(A/B)=loga A-loga B logaN^x=xloga N 二、换底公式 logM N=loga M/loga N 三、换底公式导出: logM N=-logN M 四、对数恒等式 a^(loga M)=M

一、四则运算法则:loga(AB)=loga A+loga B loga(A/B)=loga A-loga B logaN^x=xloga N 二、换底公式 logM N=loga M/loga N 三、换底公式导出:logM N=-logN M 四、对数恒等式 a^(loga M)=M

还要考虑a的大小(1)loga(MN)=logaM+logaN.(2)logaMN=logaM-logaN.(3)logaMn=nlogaM (n∈R).

1、a^(log(a)(b))=b 2、log(a)(MN)=log(a)(M)+log(a)(N); 3、log(a)(M÷N)=log(a)(M)-log(a)(N); 4、log(a)(M^n)=nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b. 2、MN=M*N 由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]*

[log(a)(x)表示a为底x的对数] log(a)(x)+log(a)(y)=log(a)(xy);log(a)(x)-log(a)(y)=log(a)(x/y) log(a^m)(x^n)=(n/m)log(a)(x) 换底公式 log(a)(x)=log(b)(x)/log(b)(a)=lg(x)/lg(a)=ln(x)/ln(a)

对数的运算法则如下: 1.a^(log(a)(b))=b (对数恒等式) 2、log(a)(a^b)=b 3、log(a)(mn)=log(a)(m)+log(a)(n); 4、log(a)(m÷n)=log(a)(m)-log(a)(n); 5、log(a)(m^n)=nlog(a)(m) 6、log(a^n)m=1/nlog(a)(m)

加乘 减除

当a>0且a≠1时,M>0,N>0,那么: (1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N); (3)log(a)(M^n)=nlog(a)(M) (n∈R) (4)log(a^n)(

log的计算就是乘方的逆过程.如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN.其中,a叫做对数的底数,N叫做真数.计算方式:根据2^3=8,可得log2 8=3.扩展资料 对数的运算法则:1、

[log(a)(x)表示a为底x的对数] log(a)(x)+log(a)(y)=log(a)(xy);log(a)(x)-log(a)(y)=log(a)(x/y) log(a^m)(x^n)=(n/m)log(a)(x) 换底公式log(a)(x)=log(b)(x)/log(b)(a)=lg(x)/lg(a)=ln(x)/ln(a)

网站首页 | 网站地图
All rights reserved Powered by www.zxpr.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com